diff --git a/src/metabase/analyze/fingerprint/insights.clj b/src/metabase/analyze/fingerprint/insights.clj
index 3779ba5b2528b9e58df40ff6d45111d4055448a3..f375b051df6847ae43228c9377f8d1af8961dd6b 100644
--- a/src/metabase/analyze/fingerprint/insights.clj
+++ b/src/metabase/analyze/fingerprint/insights.clj
@@ -19,17 +19,19 @@
 (set! *warn-on-reflection* true)
 
 (defn- last-2 []
-  (fn
-    ([] [])
-    ([acc]
-     (let [cnt (count acc)]
-       (cond (= cnt 0) [nil nil]
-             (= cnt 1) [nil (nth acc 0)]
-             :else acc)))
-    ([acc x]
-     (if (< (count acc) 2)
-       (conj acc x)
-       [(nth acc 1) x]))))
+  (let [none (Object.)]
+    (fn
+      ([] (object-array [none none]))
+      ([^objects acc]
+       (let [a (aget acc 0)
+             b (aget acc 1)]
+         (cond (identical? b none) [nil nil]
+               (identical? a none) [nil b]
+               :else [a b])))
+      ([^objects acc, x]
+       (aset acc 0 (aget acc 1))
+       (aset acc 1 x)
+       acc))))
 
 (defn change
   "Relative difference between `x1` an `x2`."
@@ -47,8 +49,8 @@
   "Transducer that samples a fixed number `n` of samples consistently.
    https://en.wikipedia.org/wiki/Reservoir_sampling. Uses java.util.Random
   with a seed of `n` to ensure a consistent sample if a dataset has not changed.
-  The returned instance is mutable, so don't reuse it."
-  [n]
+  The returned instance is mutable, so don't reuse it. `f` is invoked on the element before adding it to the sample."
+  [n f]
   (let [n (int n)
         rng (Random. n)
         counter (int-array 1) ;; A box for a mutable primitive int.
@@ -66,13 +68,14 @@
              idx (.nextInt rng c+1)]
          (aset counter 0 c+1)
          (cond
-           (< c n)   (aset reservoir c x)
-           (< idx n) (aset reservoir idx x)))))))
+           (< c n)   (aset reservoir c (f x))
+           (< idx n) (aset reservoir idx (f x))))))))
 
 (defn- simple-linear-regression
   "Faster and more efficient implementation of `kixi.stats.estimate/simple-linear-regression`. Computes some of squares
-  on each step, and on the completing step returns `[offset slope]`."
-  [fx fy]
+  on each step, and on the completing step returns `[offset slope]`. Additionally accepts `x-link-fn` and `y-link-fn`
+  functions which should be double->double."
+  [fx, fy, ^clojure.lang.IFn$DD x-link-fn, ^clojure.lang.IFn$DD y-link-fn]
   (fn
     ([] (double-array 6))
     ([^doubles arr e]
@@ -80,8 +83,8 @@
            y (fy e)]
        (if (or (nil? x) (nil? y))
          arr
-         (let [x    (double x)
-               y    (double y)
+         (let [x    (.invokePrim x-link-fn (double x))
+               y    (.invokePrim y-link-fn (double y))
                c    (aget arr 0)
                mx   (aget arr 1)
                my   (aget arr 2)
@@ -118,34 +121,38 @@
             (math/abs (- (fy x) (fy-hat x))))))
    stats/mean))
 
+(defn- double-identity ^double [^double x] x)
+
+(defn- double-log ^double [^double x] (Math/log x))
+
 (def ^:private trendline-function-families
   ;; http://mathworld.wolfram.com/LeastSquaresFitting.html
-  [{:x-link-fn identity
-    :y-link-fn identity
+  [{:x-link-fn double-identity
+    :y-link-fn double-identity
     :model     (fn [offset slope]
                  (fn [x]
                    (+ offset (* slope x))))
     :formula   (fn [offset slope]
                  [:+ offset [:* slope :x]])}
    ;; http://mathworld.wolfram.com/LeastSquaresFittingExponential.html
-   {:x-link-fn identity
-    :y-link-fn math/log
+   {:x-link-fn double-identity
+    :y-link-fn double-log
     :model     (fn [offset slope]
                  (fn [x]
                    (* (math/exp offset) (math/exp (* slope x)))))
     :formula   (fn [offset slope]
                  [:* (math/exp offset) [:exp [:* slope :x]]])}
    ;; http://mathworld.wolfram.com/LeastSquaresFittingLogarithmic.html
-   {:x-link-fn math/log
-    :y-link-fn identity
+   {:x-link-fn double-log
+    :y-link-fn double-identity
     :model     (fn [offset slope]
                  (fn [x]
-                   (+ offset (* slope (math/log x)))))
+                   (+ offset (* slope (double-log x)))))
     :formula   (fn [offset slope]
                  [:+ offset [:* slope [:log :x]]])}
    ;; http://mathworld.wolfram.com/LeastSquaresFittingPowerLaw.html
-   {:x-link-fn math/log
-    :y-link-fn math/log
+   {:x-link-fn double-log
+    :y-link-fn double-log
     :model     (fn [offset slope]
                  (fn [x]
                    (* (math/exp offset) (math/pow x slope))))
@@ -163,19 +170,15 @@
    (fingerprinters/robust-fuse
     {:fits           (->> (for [{:keys [x-link-fn y-link-fn formula model]} trendline-function-families]
                             (redux/post-complete
-                             (simple-linear-regression #(some-> (fx %) x-link-fn)
-                                                       #(some-> (fy %) y-link-fn))
+                             (simple-linear-regression fx fy x-link-fn y-link-fn)
                              (fn [[offset slope]]
                                (when (every? u/real-number? [offset slope])
                                  {:model   (model offset slope)
                                   :formula (formula offset slope)}))))
                           redux/juxt*)
-     :validation-set ((keep (fn [row]
-                              (let [x (fx row)
-                                    y (fy row)]
-                                (when (and x y)
-                                  [x y]))))
-                      (reservoir-sample validation-set-size))})
+     :validation-set ((filter (fn [row] (and (fx row) (fy row))))
+                      (reservoir-sample validation-set-size
+                                        (fn [row] [(fx row) (fy row)])))})
    (fn [{:keys [validation-set fits]}]
      (some->> fits
               (remove nil?)
@@ -254,7 +257,7 @@
              ((filter (comp u/real-number? yfn))
               (redux/juxt ((map yfn) (last-2))
                           ((map xfn) (last-2))
-                          (simple-linear-regression xfn yfn)
+                          (simple-linear-regression xfn yfn double-identity double-identity)
                           (best-fit xfn yfn))))
            (fn [[[y-previous y-current] [x-previous x-current] [offset slope] best-fit-equation]]
              (let [unit         (let [unit (some-> datetime :unit mbql.u/normalize-token)]